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ABSTRACT

In this study, we record video of the behaviors of schooling fish and analyze their collective motions. An individual fish is
modeled as an anisotropic rod-like active matter. A “polar nematic” state refers to a system whose components tend to point
in their long-axis direction but do not have positional order. Based on their state transition derived from the polar nematic
model, the internal causal influences among parts of the system is calculated according to Integrated information theory (IIT).
The resulting complex (®) is used as the order parameter. A polar nematic model with a strong anisotropy shows that ®
demonstrates a disorder-to-order transition between the groups of five and six fish. In contrast, the isotropic simple-interaction
model developed in this study shows that the ® metric is independent of the sample size. When employing mutual information
(MI) as the order parameter instead of @, as the sample size increases, Ml increases but a disorder-to-order transition does not
occur. Based on the results of this study, we conclude that & reflects certain aspects of the internal state of a system that Mi
cannot capture.

Introduction

Various groups of organisms exhibit collective motion. Motion coordination at the system level is derived from
lower-level interactions of its members or components. Observations of the overall order and structure of a group and
the complex movements of its members give rise to the notion of self-organization'. This concept refers to pattern
formation processes where an orderly structure emerges from a disorderly state through the interactions between
individual members in the absence of external force or stimuli. In a self-organizing system, individual components
tend to align their behaviors in response to those of their neighbors?. At the same time, they do not always match
the behavior of others, which weaken the big direction of the group?®. Currently, the behavioral synchrony and
congruence that organisms often exhibit have many enigmas.

One of the earliest mathematical attempts to describe a collective biological behavior based on local interactions
among group members is the boids (= bird + oids) model published in 1987, which simulated the behavior of a flock
of birds*°. To simulate flock dynamics, the boids model identified three key behavioral urges or local interactions of
individuals. First, boids avoid collisions with nearby flockmates. Second, boids attempt to match their velocities
with nearby flockmates. Third, boids attempt to remain close to nearby flockmates. Based on these assumptions,
the boids model successfully simulated flock behavior, and attracted wide scientific attention. Building on these
early models that evaluated the aggregate actions of individual animals, a new approach employing non-equilibrium
statistical physics has attracted a surging attention®. In particular, the study of “active matter,” or particles and
objects that move spontaneously, is a rapidly growing discipline”.

The Vicsek model is a famous mathematical description of active matter®?. It is simpler than the boids model,
and consists of a group of self-propelled individuals that move within given constraints. Specifically, an individual
component is a point-like particle with a given velocity and heading direction. Each particle aligns its velocity and
heading direction with those of its neighbors in the presence of noise. If the average velocity of the entire group
is defined as the order parameter, the Vicsek model exhibits a disorder-to-order transition at a critical point as a
function of the order parameter. The Vicsek model served as a springboard for a subsequent statistical physics study
of collective biological motion °.

An in-depth analysis of real-life collective motion revealed the limitations of the Vicsek model. For example,



research on a flock of starlings identified anisotropy in the motion direction'! and a turning inertia against changing
the curvature of the trajectory'?!3. These findings represent complexities that go beyond the simple and symmetrical
framework of the original Vicsek model and demonstrate that developing a model to accurately account for the
complex and asymmetric nature of collective biological behaviors is a major challenge.

What variables represent the collective orderliness of a system? Because the concept of system collective
orderliness is multi-dimensional, there is not a universal definition or measure. System collective orderliness must be
described in a specific manner to be represented by a quantitative variable. In the original Vicsek model, the average
particle velocity of the system was defined as the order parameter. In a separate approach, mutual information (MI),
which is defined to quantify the maximum information of a system, may also be used as an order parameter'*. In
either situation, certain complex properties of the dynamic system under observation are used as the order parameter,
although the intrinsic cause-effect structure of the system is not considered. Against this backdrop, a method has
been developed to infer the hidden intra-system relationship based on the behaviors of individual components along
the time axis. Integrated information theory (IIT) provides a mathematical framework to quantify the cause-effect
powers of any given mechanism within a system from the system’s intrinsic perspective rather than from an extrinsic
perspective of an outside observer. IIT enables the system’s intrinsic cause-effect structure, which is not measurable
from the outside, to be characterized'®.

This research contributes to knowledge about active matter by constructing a model to describe the inter-
relationship between the components constituting a biological system and quantifying the system’s degree of
collective orderliness. Here, we hypothesize that a mathematical model simulating the complex nature of the system
components will demonstrate a disorder to-order transition as the number of system components increases. In
addition to the simple and symmetric characteristics of the components such as distance and orientation, our model
assumes anisotropic interactions such as those described in the mathematical models for polar nematic liquid crystals.
Moreover, our model uses a complex (®) metric as the order parameter. This variable, which was originally developed
in the IIT theory, represents the amount of intrinsic information of the system components. This study uses tropical
freshwater fish, neon tetra (Paracheirodon innesi) due to their schooling behavior, hardiness, ease of keeping, and
cost efficiency.

Modeling and Measurement Methods for Schooling Fish

Mathematical Modeling for the Polar Nematic System

First, we conceptually explain the proposed nematic model to describe the state of collective orderliness. Next, we
provide a mathematical description of the electric dipole moment vector, which serves as the basis to construct the
nematic model.

Polar Nematics
“Soft” matter refers to a class of materials such as polymers, liquid crystals, colloids, biological membranes, and
biomolecules, whose structural and dynamic properties are an intermediate between those of highly ordered crystals
and disordered fluids. Soft matter commonly has a complex multilayer structure with a high flexibility and a certain
degree of freedom. When placed in a non-equilibrium environment, soft matter exhibits nonlinear non-equilibrium
dynamics (active matter). Soft matter studies investigate the autonomy and functional hierarchy in living organisms.
To model fish, we first considered the self-assembly of liquid crystals. Liquid crystals are a highly structured liquid
where the constituent molecules are orientationally ordered but their centers of gravity lack positional order. Liquid
crystals are composed of multiple rod-shaped molecules. They are typically classified into the three phases according
to the molecular orientation and assembly'®: cholesteric, smectic, and nematic. Here, we focus on nematic liquid
crystals, which are characterized by the anisotropic orientation of their constituent molecules. Anisotropy typically
refers to substances whose optical or other physical properties depend on their axis of orientation. Here this term
denotes a directional dependence in a broader sense. In the nematic state, rod-like molecules align in their long-axis
direction without positional order. The average long-axis orientation of the molecules is determined by the amount
of energy due to its angular deviation from the direction of the optical axis or director. In addition, anisotropic
attraction and repulsion forces help stabilize the liquid crystal state. The orientational order of nematic liquid
crystals is temperature dependent and changes greatly near the nematic-isotropic phase transition temperature!”.
Similar to simulations of the behavior of liquid crystals, individual neon tetras are modeled using rod-shaped
molecules. On the macroscopic level, neon tetras tend to orient in the same direction. On a local level, however,
their orientations may fluctuate. Although nematic liquid crystals generally do not show polarity along the long
axis, polarity along the long axis of the model molecule is assumed to simulate the forward movement of the fish.
Specifically, our nematic model for fish schooling consists of polar anisotropic molecules, which show orientational
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Figure 1. Polar nematic state : The arrangement of rod-like molecules is aligned in the long axis direction, but the
neighbors are irregular

order along the long axis but not positional order (Figure 1)

The polar nematic state can be modeled using electric dipole moment vectors and anisotropic dipole-dipole
interactions. The next section introduces a mathematical formula to describe the energy state of an individual
molecule 7 in the polar nematic state using electric dipole moment vectors.

Electric Dipole Moment Vectors and Anisotropic Dipole-Dipole Interactions
When a pair of point charges (£q) are separated by a distance s, and the vector from the —g charge to the +¢
charge is designated as s, the electric dipole moment vector p is expressed as'81?

p=gqs (1)

Assuming that the electric dipole moment vectors at positions R; and R; (= R; + 7;5) are p; and pj, respectively,
then the electric field created at position R; by the electric dipole moment vector p; is expressed by employing the
dipole approximation as

3(p; - 7i:)1i: — pr
SPR e o
Considering that the potential energy at position p; due to the electric field created by p; is expressed as v =
—p; - E(R;), the above equation can be transformed into
o= Pi-Pi)T? = 3(Pi-Tij) (P - 7ji) 3)

rd

Consider that the electric moment vector p; represents a molecule 7. Assuming that n; represents the orientation of
the molecule ¢ and /C; is an appropriate constant, then p; is given as

pi = \/Cin; (4)

A similar process is implemented for p; of another molecule j. If the properties of individual molecules are the same,
then C; = C; . Applying a generic constant V/C to Equation (4) gives the following generalized formula

pi = \/6TL, (5)
Now, the potential energy of a molecule ¢ attributable to the electric dipole moment vector p; is designated as
C 1
v (i, 1y, mig) = 5 g My = 35 (N 1ig) (g 754) (6)

where C(> 0) is an interaction constant. Here, a new variable ¢, which designates the anisotropic intermolecular
interaction, is introduced into Equation (6) and gives

€
9o iy, 135) = 3 {nz "1y = 35 (- 1) (1 'T‘jz‘)} (7)



The variable € satisfies the following equation: 0 < e < 12021 With this variable, the equation represents different

degrees of nematic or anisotropic interactions between electric dipole moment vectors. Specifically, ¢ = 1 means that
molecules are subject to dipole-dipole interactions. When € = 0, the molecules follow the Maier-Saupe interaction
law'®, which means that the molecular interactions are independent of the dipolar orientations. The variable € is an
indicator of dependence. The greater the value, the stronger the dependence of a molecule on others. When € = 0,
each molecule behaves independently. In this study, the absolute value of g, has no definite significance. Since we
are concerned about the ratios between different molecules, it is sufficient to define C' = 1. Consequently,

1 €
gv (i, mj,mij) = 5 {nz "1y = 35 (1) (1 '?“ji)} (8)

By summing up the energy contributions from other molecules of the system, the energy state for molecule ¢ can be
expressed as

1 €
9= = {n, g = 35 (1) (1 "’jz’)} (9)
i#]
The larger the value of g;, the greater the attraction to the group. On the other hand, the smaller the value, the
greater the repulsion.
Introducing anisotropic factor € into the potential energy equation yields Equation (9), which describes the
interaction-induced potential energy that molecule ¢ has in the nematic state. Equation (9) represents the energy
state of molecule ¢ interacting with other molecules in the system.

Measurements of System Collective Orderliness Using Integrated Information Theory

This section describes the IIT metrics used to represent the collective orderliness of a system. First, we explain that
axioms of the IIT, which postulate that information is integrated within a network. Next, we provide a mathematical
description of the theoretical framework, and defines the complex (®) metric, which represents the amount of
integrated information. Finally, we explain that the ® metric represents the internal cause-effect relationship and
consequently, denotes the collective orderliness of a system.

Integrated Information Theory: Approach to Quantitatively Characterize Consciousness

IIT provides a framework to infer the internal state of a system that cannot be observed on the basis of generally
accepted axioms?2. One major goal of this theory is to infer the quantity and quality of consciousness. Attempts have
been made to apply IIT methodologies to the state of a clinically vegetative patient and quantitatively determine
the level of consciousness. IIT presupposes several axioms, or essential properties, of consciousness.

First, IIT assumes that consciousness is informative, which leads to the notion of “intrinsic information” that
is independent of an external observer. For example, thermometers have no intrinsic information. Thermometers
provide information about the temperature, but they do not provide relevant information to the observers who need
information on other properties such as atmospheric pressure and humidity. Because the quality of information
that thermometers provide depends on the observer, they have no intrinsic information, and hence no experience or
consciousness. Intrinsic information is quantitatively defined as the distance between the probability distributions of
past states that are either constrained or unconstrained by the current state.

Second, IIT premises that consciousness is integrated. For example, a camera can store multiple pictures inside,
but this does not mean that it has consciousness. The camera keeps such pictures independent of each other, whereas
human beings can sort them based on their similarities by integrating the information of the pictures.

So far, we have discussed the two major presuppositions of the IIT theory: consciousness is informative and
generates integrated intrinsic information. However, these characteristics alone do not necessarily indicate the
presence of a boundary in consciousness that makes every experience definite. The IIT claims that consciousness is
exclusive. This means that consciousness specifies only the maxima of integrated information. For example, the
corpus callosum connects the right and left hemispheres in a healthy brain, and information processed separately in
the respective hemispheres does not surface into consciousness in isolation from each other. However, in patients
with epilepsy who underwent callosotomy, the right and left hemispheres process information independently. The
split brains rarely cause split personality disorders because the more significant information comes to consciousness,
as described by the exclusion axiom. A local maximum of integrated information is called a “complex.” Currently,
clinical attempts are being made to determine complexes. Following a concise presentation of the IIT theory of
consciousness?, we now turn to the mathematical aspects of the theory.
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Mathematical Model of Integrated Information

IIT provides a mathematical model for system S based on a discrete-time multivariate stochastic process?42?

p(X07XAt7'"7Xt7Xt+At7-~‘7XT) (10>
Equation (10) satisfies the Markov property of Equation (11)

T

p(Xo, Xats- o Xe, Xevae, -, X1) = p(Xo) [ p(XelXi-ar) (11)
t=At

This discrete dynamic system S is defined by a directed graph of interconnected nodes (a complete graph in this
study) and its transition probability matrix (TPM). The TPM defines the conditional probability distribution:
p(X¢|Xt—a¢). State vector X; is composed of binary variables: zy,,i = 1,2,...,n(n € N). The joint probability
distribution pequse—effect is defined as

Pcause — effect (Xt—Atht) = Du (Xt—At)peffect (Xt‘Xt—At) (12)

The marginal probability distribution p, (X:—a¢) is a uniform distribution that maximizes entropy distribution.
From the above joint probability distribution are derived the transition probability distribution of the cause

Dcasue-effect (Xt—At ’ Xt)

Pcause X Xi) = 13
( ¢ At‘ t) ZXt—At Pcasue- effect (Xt—Ata Xt) ( )
and the transition probability distribution of the effect

Peftect (Xt| Xe—at) = p (X¢| Xi—at) (14)

The distribution functions are called the cause repertoire and effect repertoire at state Xy, respectively. For the cause
repertoire, the amount of information reduced relative to the pre-transition state is examined across all partitions
of the purview of mechanism M of the system or its subsystem (M C S)?6 . The partition that creates the least
difference is called the minimum information partition (MIP). The cause information for the MIP ¢4y is called
the integrated cause information (15). The integrated effect information ¢cf et is derived in a similar manner (16).
The integrated cause-effect information @equse—efrect at state X; is equal to either the integrated cause information
or integrated effect information, whichever is smaller (17).

Dcause = Iznel}l {D (pcause Hpg?use )} (15)
¢effect = Iznel}l {D (peffect ||pigect )} (16)
d)causc — effect ‘= min {chffcct a(ybcausc } (17)

For all possible purviews of a given mechanism, ¢ values are computed, and the cause and effect repertoires that
generate the maximum values are termed the maximally irreducible cause repertoire (MIC) and maximally irreducible
effect repertoire (MIE), respectively.

(ZSICI;?;;E = r]neac},( {(bg:ause } 7¢I£Tagét = rjneag‘( {¢(Jaffect } (18>

where C' = 2N — 1. (In this study, the “cut-one” approximation is employed, where only 2N bipartitions are evaluated
instead of severing a single node from the rest of 2N nodes within the network.)

A “concept” refers to the maximally irreducible cause-effect repertoire that a mechanism specifies and its associated
value of integrated information ¢ecquse—effect (17). A concept is equivalent to either MIC or MIE, whichever is

smaller. If ¢222% = ... > 0, the mechanism in question constitutes a concept.

g;?l};e — effect T min {(rbg;?l);e ’ ¢g%fae}((:t (19)

Next, for all mechanisms within a system M € P(S), where P(S) is the power set of the subsystem nodes, concept
values are determined. A cause-effect structure (CES) is a set of concepts specified by all the mechanisms of the
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system. After cutting the connection from a source element to a target element, the distance between the conceptual
structure of the whole intact system and that of the partitioned system is measured. The sum of these distances
is called the integrated conceptual information ® (Big Phi). This metric quantifies the irreducibility of the set
of elements under a unidirectional partition between elements. Unidirectional bipartition, P_, = {S(l);5(2)} ,
designates a process to “cut” a subsystem into two subsets S™) and S, and sever the edge from S™) to (2 (noise
is introduced into the connections).

The value of CES for a subset of a system following a unidirectional cut, C (S P _*) is determined and compared
with C(S). This process is repeated for all subsets, and the partitioning method that minimizes ® (MIP) is
determined (20). The largest among the MIPs for all subsets of the system is called the maximally irreducible
cause-effect structure (MICS), and the subsystem giving rise to it is called a complex (21). ® is a measure for system
level exclusion.

®p; = min D (C(S),C (577)) (20)
PMaT = maX((Ppi) (21)

Distance D between the two probability distributions is evaluated in terms of the Hamming distance by applying the
earth mover’s distance (Wasserstein distance)?”. The Wasserstein distance quantifies the cost of transforming one
probability distribution into another. Although the Kullback-Leibler (KL) divergence is often applied to determine
the distance between two probability distributions, it yields infinity when two distributions are disjointed. On the
other hand, the Wasserstein metric provides a meaningful and smooth representation of the distance between two
probability distributions?®.

Collective Order Parameter

The IIT theory defines consciousness using complex (®), which represents a set of mechanisms within a system
to generate a local maximum of the integrated conceptual information. Although the IIT approach was originally
employed to study consciousness in a human system of information-processing mechanisms, it is applicable to a
broader range of networks, including a social system comprised of multiple members. In such a situation, ® represents
integration or collectivity among the members of the system. Moreover, the value of ® may represent the degree of
collective orderliness and connectivity among the system members.

Based on these considerations, we employ the ® metric as a measure of order among schooling fish. MI,
transfer entropy, and other measures for overall information propagation have been used to investigate the collective
orderliness of a system?®. Movements of individual members are evaluated in terms of distance, orientation, and
behavioral diversity. However, these variables merely reflect superficial information available to the observer. They
do not provide insight into the self-organizing process. Analysis of the apparent collective behavior may not capture
the fundamental principles that underlie the collective orderliness and integration of the system. The factors that
promote group connectivity remain unidentified. In our study, we apply the conceptual framework of IIT and use
the ® metric as the order parameter to infer the degree of group connectivity and collective orderliness.

Results

Complex (®) in the Polar Nematic Model
Results of the ® Computation
Figure 2 shows the ® changes in the value of ¢, an indicator of anisotropy. The relationship between the number of
fish and @ is drastically affected by e. When the value of € is small (i.e., = 0.3), ® increases significantly for a system
of 6 fish compared with a system of 5 fish. Specifically, when ¢ = 0.3, the average value of ® is 0.132 at n = 5, but it
increases approximately 10 times to 1.062 at n = 6. When the € value is large (i.e., = 0.7), the ® values appear to
be independent of the number of fish. For example, when € = 0.7, the average ® values are 0.150 at n = 2 and 0.254
at n = 7. The average ® value shows a two-fold increase for n = 7 compared with n = 2. However, it is unclear
whether these results indicate an increasing trend of ® because the standard deviations also increase considerably.
The average ® values are smallest when the number of fish is three or four for all € values. The smallest average
® value is 0.042 for n = 3 and ¢ = 0.7. The polar nematic model, which is expressed as Equation (9), indicates the
energy state of individual fish depends on the distance from other fish but not their orientation when ¢ = 0. When
€ = 0, ® shows a large increase from n =6 to n = 7. A value of ¢ = 1 signifies that all fish are always aligned in the
same direction. In this scenario, ® shows a minor decrease from n = 2 to n = 3, and then increases gradually from
n=3ton=".
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Figure 2. Relationship between the number of fish and ®. ® is the average of two samples. When £=0.3, ®
increases in phase transition between 5 and 6 individuals.

Calculation of & Assuming Simple Inter-individual Interactions

In the polar nematic model, ® drastically increases for n = 6 compared with n = 5 in the presence of a strong
anisotropy (i.e., ¢ = 0.3). In this section, ® is determined considering three types of simple interactions presented in
the literature3®3!. In previous studies, isotropic models showed a marked increase in ® when the number of system
members increased from 3 to 4. Here @ is calculated using a model similar to that presented in previous research
to examine whether a disorder-to-order transition can occur in the absence of anisotropy. The difference between
previous studies is that the transition probability matrix in this study is created using the logical conjunction
(“AND”) operation for processing inter-individual relationships. Similar to the section of complex(®) computation in
the polar nematic model, the transition probability matrix is created from the absolute position data.

Results of  Computation

Figure 3 shows the results in a three-dimensional manner. Regardless of the threshold value, there is not a meaningful
relationship when comparing the warm color spots (greater ® values). The ® values do not show a consistent trend
with N. The ® values are generally smaller for N = 3 compared with NV = 2, but are larger for N = 4 than for
N = 3. ® has the greatest value (0.15) for N = 2 with a distance of 140mm, field of view of 1.67 rad, and turning
rate of O rad. The model based on simple interactions contradicts the polar nematic model, where ® increases
with the number of system members. In a previous study that employed a model similar to that presented in this
section?, ® showed an abrupt increase when the sample size increased by one from a certain number, although the
transition probability matrix was constructed in a different manner.

The & values are close to 0 when the distance threshold is Omm for all N values. As the distance threshold
increases, ¢ gradually increases when N = 2 and @ is nearly the same when the other N. As the field of view
threshold increases, ® also increases when N is equal to 2. For N = 6, ® is the largest at 0.07 rad. For the other NV,
® is the largest at 0.47 rad. @ is the greatest when the turning rate threshold is 0.07 rad for any number of fish
investigated. As the turning rate threshold increases, ® becomes small. As explained above, a consistent trend is
not observed for the relationship between ® and distance or field of view thresholds.

Comparison of Mutual Information and ¢

So far, we investigated the collective orderliness using the ® metric, which quantifies the strength of all causal
influences among the parts of a system. On the other hand, MI represents the upper limit of the total causal
influences in the whole system. These two metrics follow the mathematical formula: MI > ®25. In this section, the
changes in ® and MI with the sample size and whether this relationship holds for the MI and ® values obtained
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from our simulations are investigated.
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Results of Mutual Information Computation
The MI values increase logarithmically with sample size (Figure 4). These results represent a logical consequence of
increasing the sample size, which raises the level of disorderliness.

Figure 5 compares the MI values and the ® values with an emphasis ¢ = 0.3 because a drastic change in ®
between the five- and six-fish systems is observed. ® is always smaller than MI. Our study provides experimental
support for the mathematically proven formula: MI > ®26.

Discussion

Our polar nematic model indicates that € has a notable impact on the behavior of ® by sample size. Specifically, when
€ = 0.3, ® drastically increases as the number of fish increases from 5 to 6. This phenomenon is consistent with the
phase transitions in active matter, which are well characterized by the Vicsek, boids, and other mathematical models.
Our polar nematic model exhibits a striking difference from the simple-interaction model and MI model, which fail
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to present the transitional dynamics in fish schooling. Our polar nematic model represents the non-equilibrium
statistical physics of active matter when a strong anisotropy is assumed (i.e., € = 0.3 in the possible range of 0-1).
Moreover, our study suggests that polar nematic models require the ® metric as an order parameter to simulate
disorder-to-order transition dynamics.

A previous study showed that leadership emerged in a fish school as ® increases’. However, our experimental
observations of the 5- and 6-fish groups did not identify any meaningful differences in the collective movement. This
may suggest that the changes occurring between the 5- and 6-fish groups are not of an externally observable nature.

As shown in the section of assuming simple inter-individual interactions, the turning rate of 0 rad increases the
® value greatly regardless of the sample size. However, the ® values depend greatly on the distance and field of
view thresholds, but a clear trend did not appear. Living organisms have receptors that respond to specific external
stimuli. If ® of a group of neon tetras increases greatly at a certain threshold, it may characterize the physiological
role of a particular receptor in regulating collective behavior. However, our simulations did not identify parameter
thresholds that provide new insight into the species’ physiology of schooling behavior.

The observation that there is not a threshold for any of the three physiological parameters on ® may indicate
methodological flaws in our modeling or neon tetras’ capabilities to respond to the full parameter ranges investigated.
The previous study showed that these three parameters affect organisms that act in groups*. Neon tetras, which act
in groups, would be no exception to this rule. Unlike the results of complex(®) computation, the ® metric does not
show a general increasing trend with the sample size. These results may suggest two mutually exclusive possibilities.
1) The proposed simple-interaction model is appropriately constructed, and ® of the real-life groups of neon tetras is
almost independent of size. 2) The proposed model is inappropriate, resulting in the wrong simulations. The second
hypothesis was not investigated this time.

Based on the first hypothesis, the implications of ® values remaining low regardless of the increase in the sample
size is discussed in this reference?®. Consider two networks of a small number of neurons as a simplified brain model.
Model A consists of eight neurons, which are connected to the other ones by synapses. Model B has six neurons,
which are not interconnected. Our interest is to determine which system has the greater ®. Superficial reflections
may lead one to consider that Model A has the greater ®. Indeed, the MI, a metric for the amount of information in
the entire system, is greater in Model A. However, ® is greater for Model B because of the locally asymmetric nature
of information transmission associated with disconnected neurons. A homogeneous network has less diversity in its
information quality than an inhomogeneous network, which weakens the strength of all causal influences among its
parts. Thus, Model B, which has a more diverse neural network, has a greater ® than Model A.

This leads to the next topic, “Does network diversity increase ®7” In a feed-forward neural network that transmits
information unidirectionally, ® is equal to 0 because the network does not allow for synchronous information sharing
among neurons. Increasing the ® value of a system requires network diversity and bidirectional connection between
its elements. In light of the comparison of these simple neural network models, the small ® values obtained for a
group of neon tetras may suggest the absence of system diversity despite bidirectional information sharing among
the members. System diversity refers to the varied characteristics and asymmetric interrelationships of the members.
Loss of system diversity means order formation because the similarity among the members’ behaviors reflects the
loss of variation and asymmetry. When the members of a system start to act in subordination to others, the system
develops a higher level of unity and becomes less diverse.

Several other reasons may account for the small ® values. First, our experimental design may have prevented
schooling behavior at the time of video recording. We frequently noticed during experiments that when one fish
started moving around, others followed it. However, not all fish made coordinated schooling movements at a given
time. The fish were often hovering or swimming alone. In a previous study, sweetfish (Plecoglossus altivelis) was
used to determine ®30.

The results in the section of mutual information computation demonstrate that the theoretically proven relationship
of MI > & is valid for all sample sizes investigated. These results validate the ® computations shown in the section
of complex(®) computation in the polar nematic model. Moreover, these results support the legitimacy of the phase
transition-like behavior of the ® metric, which is substantiated by a drastic change observed for e = 0.3.

Methods

Experimental Procedures

Video Recording

Immediately before the experiment, a predetermined number of healthy neon tetras were randomly selected and
transferred from the aquarium to a water-filled petri dish (diameter: 140mm). After the fish acclimated to the
environment for several minutes and their behaviors stabilized, a tablet computer (iPad Pro Third Generation) was
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Table 1. Example of transition probability matrix (TPM) when N = 2. The matrix is in state-by-node form,
assuming conditional independence, where state is the 2%V state and node is the N element . Information loss occurs
due to the conversion from state-by-state to state-by-node. Since the size of state-by-state is 2V x 2V, conversion to
state-by-node reduces the number of elements and the amount of information . Therefore, the probability
distributions when the state is at time t and at time t + 1 are given independently

State at t | Pr(N=ON) at t+1
(A, B) A B
0,00 |07 0.6
(1,0) |03 0.1
0,1) |09 0.4
1,1 |05 0.2

placed 23cm above and parallel to the laboratory bench surface to record video of the fish behavior. The petri
dish and tablet camera were covered with a sheet of thin paper rolled to form a cylinder-shaped shield to minimize
distraction by moving objects in the laboratory and to prevent reflection of light on the water surface. As soon as
the experimental setup was ready, 1,080-pixel resolution video was recorded at a rate of 30 frames per second using
the default software.

Fish Tracking and Acquisition of Position Time Series Data

The open source UMAtracker software was used to track each fish®3. This program automatically distinguished and
tracked individual fish by applying special filters. If automated tracking was lost in a frame, corrections were made
manually (Figure 6). The duration of one recording session was 15 minutes based on the consideration that a longer
time frame may allow the fish to reduce vigilance and eventually stop grouping behaviors. Preliminary experiments
showed no noteworthy changes in the integrated information metrics during 15-minute sessions.

Figure 6. Tracking each fish using UMATracker®3.

Position Time Series Analysis
First, noise was removed by taking a moving average of five consecutive time-series data, and the data were further
aggregated into 1/6—second intervals. This interval was taken from a previous study that evaluated fish’s reaction

time from a sensory input to an appropriate behavioral response?”.



Application of the Polar Nematic Model

Position time series data were substituted into the polar nematic model (9) to give time series data of the state of
individual fish, which were termed “time series state vectors.” The values derived from Equation (9) had dimensions
of energy, and were either positive or negative. Larger and smaller values indicated greater and weaker intra-system
connectivity, respectively. In Equation (9), only the hyperparameter € is a variable. Many models in the literature
include multiple variable parameters®?, whereas this study investigates the effects of one parameter. Due to
restrictions on the computational capacity, the following discrete values were used for € : 0,0.3,0.7, and 1.

Transition Probability Matrix

Each element of the time series state vector was assumed to be a stochastic value in the range of —1 to 1, while the
cognitive state of an organism was assumed to be binary. Because the cognitive state was either ON (= 1) or OFF
(= 0), each vector element was represented as the probability of taking the ON state. Elements with negative values
represent negative probabilities (quasi-probabilities), indicating the “unlikeliness” of taking the ON state. Based
on the numbers of possible transitions and time series state vectors for individual fish, a matrix was created and
normalized to yield the transition probability matrix.

The procedure to formulate the transition probability matrix is explained in reference to Table 1, which provides
data for a system comprised of two fish. The two fish, labeled A and B, can individually take either the ON or OFF
state. Hence, there are 22 (= 4) possible states for the system. The state vector determined for a given time [in the
form of (a, 8), where o and f3 indicate the probability for fish A and B to be in the ON state, respectively| indicates
the existence probabilities for each of the four possible states. For example, the state vector for time ¢ (0.3,0.8)
indicates that the probability vector for the system to take state [A = 0, B = 0] is (0.7,0.2) and the probability
vector for the system to take state [1, 0] is (0.3,0.2). The probability vectors for the system to take states [0, 1] and
[1, 1] are determined in a similar manner. Assuming that the state vector for time ¢ + 1 is (0.6,0.7), the probability
vector for the system to transition from state [0, 0] at time ¢ to state [1,1] at time ¢ 4+ 1 is (0.7 x 0.6,0.2 x 0.7)
because the existence probabilities for state [0, 0] at time ¢ are (0.7,0.2).

Similarly, the probabilities of transitioning from states [1,0], [0,1], and [1,1] at time t to state [1,1] at time ¢ + 1
were determined. Thus, eight matrix elements denoted the transition from the four possible states at time t to
state [1,1] at time ¢ + 1. This procedure was repeated for all combinations from time ¢ to time ¢t + 1, and the
resulting respective matrix elements were added and processed to represent the probabilities. This means that each
element was normalized to the range of 0 to 1. More specifically, the greatest matrix element value was converted
to unity (= 1), whereas the minimum value was converted to zero (= 0). The intermediate values were converted
appropriately to fall within the range. The column-wise sum of elements for any time ¢ did not have to equal unity
because conditional independence is assumed for time series data. Table 1 shows the transition probability matrix
determined for the mathematical procedures described above.

Computation of Each Amount of Information
Computation of Complex (9) Based on Polar Nematic Model
Complex (®) was calculated using the Pyphi software package®>. Pyphi is used to compute integrated information,
complexes, concepts, and other IIT metrics. The program was used to determine the ® values for each state of
the system. In the case of a system comprised of two fish, ® was determine for each of the 22(= 4) states. The
Pyphi’s cut-one approximation option was selected to compute the ® values to enable parallel processing. Moreover,
high-speed processing methods were used to evaluate the polar nematic state equations. Despite these efforts, the
computational requirements were so demanding?® that seven was the highest number of fish in this study.

Since the ® values did not change notably for any group of fish throughout the measurements, the ® values
averaged over the entire time series was taken as the representative ® for the group.

Computation of ® Based on Simple Inter-individual Relationships
The ON-OFF state was determined for individual fish. The ON state means that the fish in question is interacting
with one or more of the others of the system. The ON state required three conditions to be met. First, the distance
between the fish in question and its nearest neighbor must be below a certain threshold (distance). This requirement
takes the bidirectional nature of the interactions into account. Second, at least one fish must be present within the
predetermined visual field (angle) of the individual in question (field of view). Unlike the first requirement, this
takes into account the asymmetric nature of the interactions. Third, the turning rate of the individual in question
must be equal to or greater than a given threshold (turning rate).

The current ON state of the fish in question affects the state of the others at the next time point. The significance
of the turning behavior has experimentally and theoretically been shown to affect the collective behavior of animal
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groups®”. Here, the fish in question was defined to be ON when all three conditions were satisfied. That is, this
model performed a logical product (“AND”) operation for the three conditions. For example, if the distance condition
was ON (= true), field of view condition was OFF (= false), and turning rate condition was ON (= true), then the
individual was in the OFF state. The ON-OFF state at time t was determined for n individuals (n = 2 — 6). By
using binary variables 1 and 0 to denote the ON and OFF states, respectively, a state vector provided either 0 or 1
for the state of the system at time ¢t. The ON-OFF state was determined for each condition as described below.

1. Distance Condition
The distance between the fish in question 7 and another fish j at time ¢ is determined from their absolute position
time data. A set of individuals that are within a threshold distance ¢ from the fish in question can be expressed as

Si = {ild (zi(t), z;(t)) < ¢,j # i} (22)

where x;(t) denotes the absolute position coordinates of the fish in question i at time ¢ , and d(x,y) denotes the
Euclidean distance betweenxz and y. The ON-OFF function based on the distance condition can be shown as:
(Dt (z1(t), 22(t), -, 2n(t)) : RTXREx .- x R — {0,1}. When [S] is defined to designate the number of individuals
in set S, D! (x1(t), z2(t), ..., x,(t)) equals to 1 for |S!| > 0 . Otherwise, it is 0.

2. Field of View Condition
The set O} includes individuals that are located within the threshold visual angle 1 of the fish in question 4 at
time ¢

O; = {jlarg (vi(t),v;(t)) < n,j # i} (23)

where v;(t) designates the velocity vector of the fish in question i at time ¢, which is determined based on the
difference between the absolute position coordinates x;(t), at time t and @;(t — 1) at time ¢ — 1. The term arg (v (¢)
va(t)) provides the angle of two vectors. The ON-OFF function for the field of view condition can be expressed as
Bt (v1(t),v2(t),- - ,v,(t)) : RT x R x - .. x R When |O!| denotes the number of individuals included in set Of,
then B! (v (t),va(t), -+ ,v,(t)) is equal to 1 for |Of| > 0. Otherwise, it is 0.

3. Turning Rate Condition

The ON-OFF function for the turning rate condition of the fish in question i at time ¢ is given as:T (v;(t), v;(t — At)) :
R? x R? — {0,1},v;(¢) designates the velocity vector of the fish in question i at time t. v;(¢) can be determined
from the difference between the position coordinates at time ¢ and time ¢ — 1. The function is 1 when the turning
rate is equal to or greater than the threshold beginmathd. Specifically, when arg (v;(t),v;(t — At)) > ¢, then
T} (vi(t),vi(t — At)) is 1. Otherwise, it is 0.

The following term is derived for fish 7 at time t as the logical product of the three functions for the distance,
field of view, and turning rate conditions

Df (wl(t)7w2(t)> U ,:Bn(t)) A Bf (vl(t)vv2(t)7 T 7'Un(t)) N Tit (Ui(t)vvi(t - At)) (24)

The logical product is expressed as: A : {0,1}2 — {0,1}. The value is equal to 1 for 1 A 1. Otherwise, it is 0. The
state of the fish ¢ at time ¢ is denoted using the threshold matrix (¢, n,d) as: s;(¢;¢,n,0) € {0,1} . The state vector
for the system at time ¢ is given as: s(t) = (s1(t),82(t),...,sn(t)) € {0,1}™. The threshold parameters are not
shown in the equation for the sake of simplicity.

The state vector created in the section of complex(®) computation in the polar nematic model contains stochastic
variables, whereas the state vector created in this section contains Boolean variables (0 and 1). Unlike the procedures
in the section of complex(®) computation in the polar nematic model, the existence probabilities can be neglected in
the transition probability matrix here. The matrix was constructed based on the numbers of possible transitions for
each fish and normalizing the matrix elements. In a previous study, the transition probability matrix was created
using the logical product operation to process inter-individual relationships®’. According to their approach, the
fish in question could not take the ON state unless all other members of the system were in the ON state in the
previous time point. Thought experiments suggest that this assumption is not acceptable. Consider a group of
five fish, and assume that among the four individuals other than the fish in question, one is OFF and three are
ON at a given time. According to their model, the fish in question will take the OFF state at the subsequent
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time point. However, it is very unlikely that the influence from one OFF individual exceeds that from three ON
individuals. Instead of a deterministic methodology, our approach explores the mechanism of group dynamics based
on experimental data. In other words, we adopted a phenomenological approach to investigate the intersubjective
dynamics of fish schooling. The IIT methodology, which addresses intrinsic information that is not reducible to
directly measurable metrics, allows unknown relationships within a system to be inferred based on measurement
data. Using the resulting transition probability matrix, we determined the ® values for each possible state of the
system. These values were then averaged over the entire time series to yield the system’s ® value, an indicator for
system collective consciousness.

Computation of Mutual Information
Using the polar nematic model, we calculated MI using the time series state vector. The state vector at time ¢ and
time t,t — At can be shown using binary variables as and , respectively, where N represents the number of state

vector elements. The MI for the two variables X; = (2}, x5, ..., 2%) and X;_a; = (xi7 80, b2 2f721) is

; P (X, Xe—At)
min D - Xp, Xy np) log Pt oAt
a(Xe,Xo—ar) KL[qu] XtXZt_Atp( t t At) gp(Xf)p(Xt_At)

=H (Xy) + H (Xi—ar) — H (Xi—ae| Xy)
= I(XﬁthAt)

(25)

The MI was computed for each time point, and the mean value, which was averaged across all time points, was
defined as the system’s MI.
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